您的位置:澳门威斯尼斯人娱乐网 > 化学科学 > 化学所利用半导体纳米线同质结实现光学分波器

化学所利用半导体纳米线同质结实现光学分波器

发布时间:2019-07-14 22:30编辑:化学科学浏览(165)

    光学分波器是纳米光子回路中的关键元件,可以用来连接纳米激光器(J. Am. Chem. Soc., 2011, 133, 7276-7279)、光信号传感器(Adv. Mater., 2012, 24, OP194-199)、检测器 (Adv. Mater., 2012, 24, 4745-4749)等功能元件,实现光信号在回路中的传输和处理。传统的光学波分元件通常是由光子晶体、衍射光栅等大尺寸材料组装而成,难以实现光信号在微纳尺度上的传输与处理。半导体纳米线具有较大的折射率和较低的传输损耗,能够在亚波长尺度上高效地传输光信号(J. Am. Chem. Soc., 2012, 134, 2880-2883),进而成为构筑波分元件的理想材料。最近,在国家自然科学基金委、科技部、中国科学院和化学所的支持下,光化学院重点实验室的科研人员通过气相可控生长制备了半导体纳米线同质结,成功地在单个纳米材料上构筑了光学分波器,实现了不同波长的光信号在微纳尺度上的分离和传输。相关结果发表于近期的《先进材料》 (Adv. Mater., 2014, 26, 620-624)。

    光子学器件具有电子学器件无法比拟的高速、高带宽和低能耗等优点,在光信息处理和光子学计算中扮演着非常重要的角色。化学所光化学院重点实验室的科研人员近年来一直致力于低维有机光子学方面的研究(Acc. Chem. Res.,2010,43,409-418,Adv. Funct. Mater., 2012, 22, 1330-1332),围绕光子学集成器件中所需要的微纳光源(J. Am. Chem. Soc., 2011, 133, 7276-7279,)、光波导(Adv. Mater.,**2011,23, 1380-1384)、光子路由器(J. Am. Chem. Soc., 2012, 134,2880-2883)、光电检测(Adv. Mater.,2012*,澳门微尼斯人娱乐,24*, 2332-2336)等开展了一系列的探索工作。相关工作证实了低维有机材料在纳米光子学领域的巨大潜力,为进一步获得复杂功能的光子学元件奠定了基础。

    澳门微尼斯人娱乐 1

    受到光学衍射极限的限制,光子学器件尺寸都在百纳米以上,与电子器件回路尺度的差距过于悬殊,难以实现二者在同一回路中的集成。因此,寻求合适的方法发展小于光衍射极限的光学器件,在纳米尺度来进行光信息处理势在必行。最近几年,一维金属纳米结构作为光波导材料受到了国内外的广泛关注。金属纳米线的宽度为几十到几百纳米,却可实现光在衍射极限以下的传播,其原因就是光在金属纳米结构中以表面等离极化激元(Surface Plasmon Polariton, SPP)的形式传播。SPP是一种存在于金属表面的特殊电磁场形式,在其偏振状态、模式体积、色散特性等方面具有一系列独特的物理性质,有望实现用于信息处理的表面等离激元集成器件。然而金属的固有传输损耗很大,仅仅通过SPP波导很难在集成光子回路中进行数字信号传输,因此需要开发一种简便、有效、通用的策略把SPP模块集成到低损耗的介质光互连系统中实现数字信息的发送和接收。

    图1 半导体纳米线同质结组装的多通道波分复用器

    最近,在国家自然科学基金委、科技部、中国科学院和化学所的大力支持下,化学所光化学院重点实验室科研人员在前期工作的基础上,利用定点外延生长的方法制备出有机/金属纳米线异质结,通过有机单晶纳米线中的激子极化激元与银纳米线中的SPP的强耦合作用有效地提高了SPP的激发效率。银纳米线中的信号强度与入射光偏振方向有很强的依赖关系,通过改变入射光的偏振方向调控信号强度,实现了亚波长尺度下的纳米光子学逻辑运算元件。相关工作发表于近期的《先进材料》(Adv. Mater., 2012,24, 5681–5686),并被选作当期封面文章。

    光信号在纳米线中的传输主要依赖于纳米线腔体对光的限域能力,不同直径的纳米线可以限域不同波长的光信号。每个特定波长的光信号都有相应的截止直径,在低于此截止直径的波导通道中,光信号便不能继续传播。该实验室科研人员通过两步法气相合成氧化锌纳米线同质结,并且通过操纵单根纳米线同质结,构筑纳米线光子回路,实现了紫光和绿光信号的分离和传输。进而集成多个同质结和交叉结,成功构筑了多通道的光学分波器。该成果被邀请作为当期的内封面文章。

    澳门微尼斯人娱乐 2

    澳门微尼斯人娱乐 3

    图1 封面文章:有机/金属纳米线异质结中EPs与SPPs的相互耦合

    图2 基于同质结组装的分波器应用于光信号的传输和处理

    进一步,为了把逻辑处理结果输送到正确的端口,他们又发展了能够定向传输信号的方向耦合器。在有机分子液相自组装的过程中,引入金属银纳米线,成功将多根金属纳米线包埋在单晶的有机微米线中,可控制备了树枝状的有机/金属纳米线异质结,基于光子与SPPs耦合效率动量匹配的角度依赖关系,在亚波长尺度下对多光子信号进行操纵,实现了定点输入、定点输出的定向耦合器,为构建纳米光子学多输入、多输出的复用元件提供了新思路和新方法。相关结果发表于近期的《先进材料》上(Adv. Mater., 2013, 25, 2784-2788),并被邀请作为当期的背封面文章。

    光化学院重点实验室

    澳门微尼斯人娱乐 4

    2014年3月17日

    图2 背封面文章:有机/金属纳米线异质结中EPs与SPPs的相互耦合及其在多光子信号操纵方面的应用

    光化学院重点实验室

    2013年6月5日

    本文由澳门威斯尼斯人娱乐网发布于化学科学,转载请注明出处:化学所利用半导体纳米线同质结实现光学分波器

    关键词: