您的位置:澳门威斯尼斯人娱乐网 > 化学科学 > 化学所实验研商人士成功制备具备细软性的聚电

化学所实验研商人士成功制备具备细软性的聚电

发布时间:2019-08-06 07:49编辑:化学科学浏览(191)

    在国家自然科学基金委杰出青年基金、中科院方向性创新项目的支持下,化学所胶体与界面科学院重点实验室李峻柏研究员领导的课题组,在聚电解质纳米管的制备方面取得重要进展。他们使用压力-模板法,利用层层组装(layer-by-layer assembly,LbL)技术,在模板内制备了聚电解质纳米管,研究发现此纳米管具有很好的柔韧性。这一重要进展对于研究其他聚电解质和复合组分的纳米管制备具有重要意义,该研究成果已经发表在近期出版的国际著名期刊《美国化学会会志》 (J.Am.Chem.Soc.2003, 125, 11140-11141) 上。

    近日,中国科学院北京纳米能源与系统研究所李舟课题组与北京大学深圳研究生院的李子刚课题组、王新炜课题组合作,在α-螺旋多肽自组装新模式及其在储能方面的应用研究中取得新进展,相关研究成果发表在近期的Science 子刊Science Advances上(DOI: 10.1126/sciadv.aar5907)。

    图片 1

    多肽分子精准的层级自组装(hierarchical self-assembly),作为一种自下而上(bottom-up) 的生物纳微材料制备方法,其在仿生学、催化、物质分离、生物电子器件领域受到越来越多的重视。与无机纳米材料相比,多肽分子具有来源广泛、天然可降解、生物兼容性好、易于修饰等特点。以FF二肽及其衍生物为代表,通过一系列物理(电场辅助法,磁场辅助法,温度辅助法,超声辅助法)和化学(pH,溶剂法,催化法)手段,精准操控多肽分子自组装的路径,得到了多肽纳米管纳米纤维、纳米线、纳米凝胶、纳米量子点等一系列具有特殊结构的纳微多肽材料,这些材料或具备良好的半导体性质,或展现出优越的柔韧性以及特殊的光学性质。在诸如柔性超级电容器/电池、压电器件、生物传感、光导器件,以及生物医学领域得到了广泛的应用。

    整齐排列的具有良好柔韧性的聚丙烯氯化铵/聚苯乙烯磺酸盐纳米管SEM 和TEM图

    多肽分子自组装是通过调节多肽分子之间非共价作用,如范德华力、氢键网络、疏水相互作用、π-π相互作用等,来实现多肽分子在一定条件下长程有序排列的一种手段。由于多肽分子结构复杂多样,多肽序列改变导致分子性质迥异。因此,预测以及设计多肽分子自组装具有很大的难度。早年关于多肽自组装的研究主要集中在两亲性多肽分子、β-折叠多肽、首尾相连的环状D-L-D型多肽分子,以及FF二肽类分子。对于更加复杂的螺旋多肽自组装,鲜有报道。原因是螺旋多肽熵值较低,氢键网络被封锁在多肽内部,难以形成分子之间的氢键网络。因此,如何操纵具有更加复杂的二级结构的多肽,比如螺旋多肽,实现可控的自组装,是目前研究的重难点之一。

    纳米管在材料、电子、医学及生物技术等方面有广阔的应用前景。而多层聚电解质纳米管的制备在新材料开发、生物传感器设计以及化学催化等方面具有重大的意义;同时染料等功能分子的掺杂可以调控聚电解质纳米管光学和电学性质,可将其应用到光学和电学等领域。

    李舟课题组长期关注并发表了一系列基于生物可降解的分子的可植入器件的制备和应用。鉴于多肽分子在该领域的巨大前景,课题组进行多肽纳米材料在储能、传感领域的研究,已在国际学术期刊Small上发表相关论文。最近,李舟课题组及其合作者开发了基于手性诱导螺旋体系的新的多肽纳米材料制备方法。基于该体系,研究人员认为:可以通过主链之外的驱动力-侧环相互作用,来弥补螺旋多肽主链自组装驱动力不足的缺点,实现一种新型模式的多肽组装方法,即所谓的“侧环驱动”多肽自组装。基于这样一种构想,研究人员进行了细致的筛选和表征。他们以五肽为模型,设计合成了一系列具有手性侧环的五肽分子,取名为BDCP。结果表明,当BDCP为螺旋结构,且侧环取代基具有芳香性时,多肽分子可以组装成纳米管/纳米带结构。

    层层组装技术是指利用阳离子和阴离子聚电解质通过分子间的静电相互作用形成超分子多层组装体,常用作制备平板上的多层膜,聚电解质的空心微胶囊和空心微球等,其原理也可用于在模板内制备聚电解质纳米管。

    接下来他们对多肽自组装的机理进行了研究。通过与北京大学深圳研究生院两个课题组的合作,对多肽组装结构进行了晶型预测,得到了多肽分子的组装模型。该模型显示出了和实验结果良好的一致性。结果表明,多肽分子间的π-π相互作用,S-π 相互作用,以及氢键网络驱动了多肽分子的组装。在多肽组装体中,极性和非极性界面依次形成,且每两个极性层的偶极子方向相反,这样使组装体内部的偶极相互作用得以相互抵消,进一步稳定了组装体。这也是该领域首次报道S-π 相互作用参与多肽自组装的例子。

    模板法(template method)是制备各种纳米管常用的方法,以往用模板制备聚合物纳米管有多种方法,但这些常用的方法均不适用于聚电解质纳米管的制备,因为聚电解质所具有的电荷极易与模板表面的电荷相互作用在表面形成复合膜,使溶液不能进入模孔而形成稳定的管状结构。

    在此基础上,研究人员进一步研究了组装材料的光学和电学性质。在不同激发光照射下,多肽组装体可以发出从蓝色到红色荧光。该材料在生物成像领域存在巨大的应用前景。在电学测试中,在李舟指导下,研究人员探讨了多肽组装体作为超级电容器活性材料的储能性质。2009年,来自以色列的科学家首次报道了环状苯丙氨酸二肽“纳米森林”材料在储能方面的应用。该研究显示了多肽材料具有良好的力学、电学性质,结合多肽纳米材料较高的比表面积、合适的亲疏水性,以及优良的导电性质等优点,多肽储能成为了下一代柔性、可植入、轻质、无污染储能器件的潜在选项。在该研究中,研究者系统比较了四组多肽分子的电化学性质,结果表明多肽材料储能大小可以通过多肽序列来调控。通过循环伏安法、恒流充放电等电化学测量手段,证明多肽材料具有良好的循环稳定性、倍率性以及高于FF多肽材料的比电容性质。

    李峻柏研究员领导的课题组对聚电解质纳米管制备方法进行改进,发展了压力膜-模板技术,利用层层组装法在带电模板的孔内形成了三层的聚丙烯氯化铵/聚苯乙烯磺酸盐纳米管。所制得的纳米管排列整齐,管壁厚度可控,具有良好的柔韧性。 基于聚电解质类化合物优异的柔韧性能,聚电解质纳米管的成功制备,将使其在具有强力学性质的光电器件设计等方面具有重要应用前景,并为高聚物纳米材料的制备提供了新思路。

    该项研究不仅在多肽材料制备方面具有重要的理论价值,而且具有重要的应用前景。李舟课题组的助理研究员胡宽是论文的共同第一作者,博士生李虎在电化学测试中做出了贡献。在上述工作的基础上,李舟课题组目前正在积极开展多肽储能、多肽压电传感方面的研究工作。

    (胶体与界面科学院重点实验室供稿)

    图片 2

    多肽分子的结构以及组装体的SEM照片

    图片 3

    多肽组装体的分子晶体结构预测示意图

    图片 4

    多肽组装体的电化学性质测试

    本文由澳门威斯尼斯人娱乐网发布于化学科学,转载请注明出处:化学所实验研商人士成功制备具备细软性的聚电

    关键词: